中国增材制造产业发展报告(2017年)解读

3D打印报告数据
2017
08/03
17:15
分享
评论
本帖最后由 小软熊 于 2017-8-4 10:00 编辑

增材制造(Additive Manufacturing,AM)又称3D打印,是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,体现了信息网络技术与先进材料技术、数字制造技术的密切结合,是先进制造业的重要组成部分。当前,增材制造技术已经从研发转向产业化应用,其与信息网络技术的深度融合,将给传统制造业带来变革性影响,被称为新一轮工业革命的标志性技术之一。世界各国纷纷将增材制造作为未来产业发展新的增长点重点培育,推动增材制造技术与信息网络技术、新材料技术、新设计理念的加速融合,力争抢占未来科技和产业制高点。

一、增材制造产业发展历程
微信图片_20170803165606.jpg
增材制造技术起源于美国。1983年,美国科学家查尔斯•胡尔(Charles Hull)发明光固化成形技术并制造出全球首个增材制造部件。1986年,查尔斯•胡尔获得了全球第一项增材制造专利,同年成立3D Systems公司。1987年,3DSystems发布第一台商业化增材制造设备,全球进入增材制造时代。随后,熔融沉积成形技术(FDM)、激光选区烧结(SLS)、激光选区熔化(SLM)、激光近净成形(LENS)、电子束选区熔化(EBSM)、三维立体打印(3DP)、分层实体制造(LOM)、生物3D打印等成型工艺先后出现。

20世纪80年代末,我国启动开展增材制造技术的研究,研制出系列增材制造装备,并开展产业化应用。1988年,清华大学成立了激光快速成形中心。1993年,国内第一家增材制造公司——北京殷华快速成型模具技术有限公司成立。随后,华中科技大学、西安交通大学、西北工业大学、北京航空航天大学等高校开展增材制造技术的研究和产业化。此外,依托社会力量成立的北京隆源自动成型系统有限公司,从1993年开始研发SLS增材制造设备,同年5月,国内首台工业级增材制造设备——激光选区烧结(SLS)设备样机研发成功。2015年,为加快推进我国增材制造产业健康有序发展,工业和信息化部、发展和改革委员会、财政部联合发布了《国家增材制造产业发展推进计划(2015-2016年)》。

微信图片_20170803165611.jpg
二、国外增材制造产业发展现状
(一)产业规模快速增长
微信图片_20170803165613.jpg

据Wohlers Associates对全球61家工业系统制造商、19家专用材料生产商、100家服务提供商以及一批消费级增材制造设备制造商的统计数据显示,2016年,全球增材制造产业产值达到60.63亿美元,同比增长17.4%。工业级增材制造装备制造企业数量不断增加。2016年,全球有97家工业级增材制造装备制造商,相比2014年的49家,增长近1倍。

(二)产业格局基本形成

微信图片_20170803165615.jpg
全球增材制造产业已基本形成了美、欧等发达国家和地区主导,亚洲国家和地区后起追赶的发展态势。美国率先将增材制造产业上升到国家战略发展高度,引领技术创新和产业化。欧盟及成员国注重发展金属增材制造技术,产业发展和技术应用走在世界前列。俄罗斯凭借在激光领域的技术优势,积极发展激光增材制造技术研究及应用。日本全力振兴增材制造产业,借助增材制造技术重塑制造业国际竞争力。
微信图片_20170803165617.jpg
据Wohlers报告统计,2015年全球增材制造设备市场保有量格局中,欧、美国家占有率67.9%。其中,北美国家占有率39.7%,欧洲国家占有率28.2%,均呈现下降趋势。亚洲国家占有率为27.5%,呈现小幅上升趋势。从国别看,美国的设备保有量占有率居首,高达37.8%,相比2014年下降了0.3个百分点。德国设备保有量占有率达居其次,高达9.6%,相比2014年下降了0.1个百分点。中国(不含台湾地区)后来者居上,居第三位,保有量占有率由2014年的9.2%升至2015年的9.5%,增长0.3个百分点。

(三)应用范围不断拓展
微信图片_20170803165619.jpg
近年来,增材制造技术广泛应用在航空航天、汽车、医疗、文化创意、创新教育等众多领域,越来越多的企业将其作为技术转型方向,用于突破研发瓶颈或解决设计难题,助力智能制造、绿色制造等新型制造模式。从2015年全球增材制造应用格局来看,工业机械(19.9%)、航空航天(16.6%)、汽车领域(13.8%)、消费品/电子产品(13.1%)、医疗/牙科(12.2%)的等领域的应用居前五。与2014年相比,在工业机械领域的应用提升了2.4个百分点,在学术机构领域的应用提升了2.3个百分点,在航空航天领域的应用提升了1.8个百分点。但在消费品/电子产品、汽车、医疗/牙科、政府/军队等领域的应用分别降低了3.5、2.3、0.9、0.7个百分点。

(四)企业并购持续进行
微信图片_20170803165621.jpg
随着一大批企业进入增材制造领域,全球范围内的产业竞争加剧。Stratasys通过全球并购提升竞争力。2012年,Stratasys与Object公司合并,奠定了Stratasys公司行业领导者的地位。2013年,Stratasys收购消费级增材制造市场著名厂商Makerbot,扩张势力版图。2014年,Stratasys出资1亿美元收购全球最大的3D设计分享网站GrabCAD,布局上游产业。2015年,Stratasys合并RedEye、Harvest Technologies和Solid Concepts,布局按需制造服务。同年,Stratasys收购增材制造咨询公司Econolyst,并成立Stratasys Strategic Consulting公司,正式涉足增材制造咨询行业。3D Systems通过全球并购打造完整产业链条。3D Systems自成立以来,收购了数十家增材制造领域内的企业,仅在2009到2013年的5年间,3D Systems收购增材制造设备制造商、专用材料生产商、设计公司、软件开发商、3D扫描仪制造商、服务提供商等近30家企业,涵盖了增材制造的全产业链。GE通过全球并购实现从增材制造应用向增材制造装备及服务供应商转变。GE公司2010年开始布局增材制造技术,通过不断并购实现从增材制造用户方到服务提供方的转变。2016年,GE公司成功收购瑞典Arcam公司和德国ConceptLaser公司,成为金属增材制造领域的佼佼者。

(五)国外重点增材制造企业发展向好
微信图片_20170803165623.jpg
EOS、SLM Solutions、Arcam、ExOne等龙头企业营业收入实现较大增长,EOS、SLMSolutions的营收增速同比超过20%。Stratasys、3D Systems、ExOne等龙头企业的营业收入持续小幅下降,但亏损大幅减少。其中,Stratasys总营收6.72亿美元,是全球最大增材制造企业。

三、中国增材制造产业发展概述

经过二十多年发展,我国增材制造产业化步伐明显加快。在《国家增材制造产业发展推动计划(2015-2016年)》等相关规划政策的引导和支持下,我国增材制造产业快速发展,关键技术不断突破,装备性能显著提升,应用领域日益拓展,生态体系初步形成,涌现出一批具有一定竞争力的骨干企业,形成了若干产业集聚区。

(一)发展现状
微信图片_20170803165625.jpg
1.产业规模实现快速扩张。据中国增材制造产业联盟对23家规模以上企业的经营数据统计,2016年规模以上增材制造企业总产值20.3亿元,比2015年的10.8亿元增长87.5%。2017年上半年总产值为11.6亿元,同比增长50.5%,产业规模实现快速增长。从产业构成看,增材制造装备、材料和服务的产值比例分别为50.1%、26.9%、23.0%,增材制造装备产值占一半。
微信图片_20170803165627.jpg
2.产业发展格局初步形成。我国增材制造产业已初步形成了以环渤海地区、长三角地区、珠三角地区为核心,中西部地区为纽带的产业空间发展格局。环渤海地区,增材制造产业发展处于国内领先地位,形成了以北京为核心,多地协同发展,各具特色的产业发展格局。长江三角洲地区,具备良好经济发展优势、区位条件和较强的工业基础,已初步形成了包括增材制造设备研究开发、生产、应用服务及相关配套设备的增材制造产业链。珠三角地区,增材制造产业发展侧重于应用服务,主要分布在广州、深圳、珠海和东莞等地。此外,陕西、湖北、湖南等省份是我国增材制造技术中心和产业化重镇,集聚了一批龙头企业。安徽省也是增材制造产业的重要集聚区,芜湖市繁昌县的春谷3D打印智能设备产业园已成为华东地区最大的增材制造产业集聚区。
微信图片_20170803165629.jpg
3.行业应用持续拓展深化。增材制造已经成为航空航天等高端设备制造及修复领域的重要技术手段,初步成为产品研发设计、创新创意及个性化产品的实现手段以及新药研发、临床诊断与治疗的工具,并且应用范围不断向医疗、建筑、服装、食品等行业领域扩展。西安铂力特激光成形技术有限公司针对航空航天极端复杂的精密构件加工制造问题,利用SLM技术解决了随形内流道、复杂薄壁、镂空减重、复杂内腔、多部件集成等复杂结构问题,每年可提供复杂精密结构件8000余件上海电气集团股份有限公司依托“3D打印打印燃气轮机轴向旋流器工业化应用探索”项目,成功制备出符合性能要求的部件,可协助完成重型燃气轮机关键零部件的原型设计与优化。在核工业领域,中广核集团“金属3D打印应用于核电领域的关键技术研究”取得重大成果,利用激光选区熔化(SLM)技术制造核电站复杂流道仪表阀阀体,该阀体的材料化学成分满足国际核电标准RCC-M的要求,相比传统工艺可缩短制造周期,可满足小批量快速生产、降低成本等方面的要求。
微信图片_20170803165631.jpg
4.服务支撑体系逐步完善。为促进产业健康有序发展,全国增材制造标准化技术委员会、中国增材制造产业联盟、国家增材制造创新中心、国家增材制造产品质量监督检验中心等行业组织相继成立,我国服务支撑体系正逐步完善。
微信图片_20170803165633.jpg
5.政策保障体系初步建立
我国高度重视增材制造产业发展,《中国制造2025》指出要加快增材制造技术和装备的研发、应用,建设增材制造创新中心。在《中国制造2025》“1+X”规划体系中,有8个规划提及增材制造,被列为研发、产业化和应用重点。国家相关部委出台了系列规划政策,推动增材制造产业的创新发展,工业和信息化部、发展改革委员会、财政部研究制定了《国家增材制造产业发展推进计划(2015-2016年)》,科技部实施《国家重点研发计划增材制造与激光制造重点专项实施方案》。此外,北京市、陕西省、辽宁省、福建省、湖北省、黑龙江省等地也纷纷出台促进产业发展的相关意见,指导本地产业发展。

微信图片_20170803165635.jpg
微信图片_20170803165638.jpg

微信图片_20170803165640.jpg
(二)存在问题
微信图片_20170803165642.jpg
1.产业规模化程度较低。我国增材制造产业虽然取得了长足进步,但整体上呈现“小、散、弱”的状态。据不完全统计,我国现有增材制造企业有几百家,但缺少规模大、实力强的国际龙头企业,国内规模最大企业的年销售收入仅3亿多元,不到美国Stratasys公司年销售额45亿元的7%。

2.专用材料发展滞后。我国在增材制造专用新材料领域的发展仍然滞后,面临材料选择局限性较大,品种少,供应商少,高性能材料严重依赖进口的现状。目前国内只开发出钛合金、高强钢等几十种金属和非金属材料,而且金属材料成形品的可靠性、稳定性普遍不高且缺乏试验验证。


3.关键装备和核心器件依赖进口。我国工业级增材制造装备在环境温度控制、工艺稳定性等方面总体上与发达国家还有较大差距,关键装备与核心部件严重依赖进口的问题依然较为突出,如高光束质量激光器及光束整形系统、高品质电子枪及高速扫描系统、大功率激光扫描振镜、动态聚焦镜等精密光学器件、阵列式高精度喷嘴/喷头等严重依赖进口。我国绝大部分增材制造软件市场被国外企业占据,用于支撑设计、扫描路径形成、方案制定的专用工艺软件及控制软件在国内仍处于起步阶段,有些软件甚至处于空白。

4.行业标准体系不健全。虽然我国已提出增材制造领域的7项国家标准,但尚未建立起涵盖设计、材料、工艺设备、产品性能、认证检测等在内的完整的增材制造标准体系。行业标准的缺失,很大程度上制约了增材制造技术成果的累积、固化和推广应用,未能架起技术和产业衔接的桥梁,减缓了产业发展进程。

5.协同推进机制尚需完善。目前国内产学研存在严重脱节,很多创新性技术仍滞留在高校院所,很难实现产业化,产学研用密切结合的研发及产业化协同推进机制尚未有效形成。高等院校、科研机构和企业各自为战,技术和产品研发重复投入,信息、资源不能实现共享的问题较为突出。

6.应用推广有待加强。目前,我国对增材制造技术的认识依然不足,创新应用能力还不够强,加之工业级增材制造设备的昂贵成本和维护费用,中小企业望而却步,阻碍现有传统生产方式的改造升级,需要进行较长时间的市场培育。在金属增材制造领域,受困于“功能优先”设计理念等因素的影响,如何进一步加快应用推广仍旧还需进一步探索。

四.增材制造产业发展展望

微信图片_20170803165644.jpg

(一)增材制造产业将持续高速增长
增材制造产业正从起步期迈入成长期,呈现出加速增长的态势,据WohlersAssociates(2017)统计,1988-2015年的27年中,全球增材制造产业的年复合增长率为26.2%,其中,2012-2014年的CAGR高达33.8%。按照产业生命周期理论,预计未来10年,全球增材制造产业仍将处于高速增长期,发展潜力巨大。据IDC预测,2016-2020年,全球增材制造产业将保持22.3%的年复合增长率,至2020年全球增材制造产值将达289亿美元。麦肯锡预测,到2025年全球增材制造产业可能产生高达2000-5000亿美元经济效益。

(二)工业级增材制造成主流方向
工业级增材制造可广泛运用于传统产业转型升级和战略性新兴产业发展,随着增材制造技术的逐渐成熟和成本的不断降低,市场需求和发展潜力较大。尤其在金属增材制造领域,已经展现强势增长势头。据统计,2015年全球金属增材制造设备销量增长了35%,2016年上半年同比增长17%。在航空航天、汽车、航海、核工业以及医疗器械等领域对金属增材制造的需求十分旺盛,应用端呈现快速扩展态势。

(三)融合发展助推规模化应用
增材制造技术的优势在于原型制造和小批量生产上,潜能主要体现在个性化产品和复杂产品批量化制造上。增材制造并非是对以“减材制造”、“等材制造”为基础的传统制造技术的取代与挑战,而是通过与传统制造的融合,对现有生产模式、供应模式、商业模式加以补充和革新。随着增材制造技术的不断成熟和软件系统完善,将会在设计、生产过程控制、后处理等当前生产系统的各个环节实现无缝对接,推动增材制造融入现有生产体系,实现规模化应用。

(四)应用的深度和广度持续拓展
从应用细分领域来看,在工业领域,增材制造技术的应用已从简单的概念模型、功能型原型制作向功能部件直接制造方向发展,正渗透到复杂结构件设计及制造领域。同时,在造型评审、设计验证、复杂结构零件、多材料复合零件、轻量化结构零件、定制专用工装、表面修复、个性换装件等方面的应用越来越多。在生物医疗领域,依据患者医学影像数据增材制造的生物模型已经成为辅助治疗的手段,包括术前模拟等应用,未来或将从“非活体”打印逐步进阶到“活体”打印转变。

来源:赛迪智库


评分

参与人数 1熊币 +5 收起 理由
大英熊 + 5

查看全部评分


上一篇:论生物打印在皮肤组织工程中的应用
下一篇:Gartner发布2017版本3D打印炒作周期图
回复

使用道具 举报

推动3D打印

关注南极熊

通知

联系QQ/微信9:00-16:00

392908259

南极熊3D打印网

致力于推动3D打印产业发展

Copyright © 2024 南极熊 By 3D打印 ( 京ICP备14042416号-1 ) 京公网安备11010802043351
快速回复 返回列表 返回顶部